

PROYECTO DE MODIFICACIÓN

LÍNEA ELÉCTRICA A 220kV, DOBLE CIRCUITO, E-S ST ASSEGADOR DE LA L.E. EXISTENTE A 220kV ST. BETXÍ – ST. LA PLANA

PROVINCIA DE CASTELLÓN

SEPARATA DE AFECCIÓN A COMUNIDAD DE REGANTES DE VILA-REAL

PROYECTO: L.E. A 220KV (DC) E-S ST ASSEGADOR DE LA L.E. EXISTENTE A 220KV ST. BETXÍ – ST. LA PLANA

ID.: 100093721-6-0-0000-RE-IBDEL-3706 REV.: 00 HOJA 2 DE 13

ÍNDICE

. M	EMORIA	3
1.1	Antecedentes y finalidad de la instalación	3
1.2	Objeto y situación administrativa	4
1.3	Emplazamiento de la instalación	4
1.4	Descripción del trazado de la línea	4
1.5	Titular de la instalación	5
1.6	Características generales de la instalación	6
1.7	Afecciones	11
2. Pl	_ANOS	13

PROYECTO: L.E. A 220KV (DC) E-S ST ASSEGADOR DE LA L.E. EXISTENTE A 220KV ST. BETXÍ – ST. LA PLANA

ID.: 100093721-6-0-0000-RE-IBDEL-3706 REV.: 00 HOJA 3 DE 13

1. MEMORIA

1.1 Antecedentes y finalidad de la instalación

El suministro eléctrico al municipio de Vila-Real se realiza desde dos subestaciones, una alimentada a 66 kV de utilización restringida a una zona muy concreta por la naturaleza de las redes de tensiones inferiores que abastece, y otra al sur de la población alimentada a 132 kV desde la línea eléctrica que une las subestaciones de La Plana y Sagunto. Esta segunda, de mayor importancia, tiene instalados dos transformadores 132/20 kV de 40 MVA cada uno y es la que proporciona el suministro eléctrico al municipio de Vila-Real y apoya el de otros colindantes.

El desarrollo del Plan General de Ordenación Urbana de Vila-Real conlleva la urbanización y consolidación de importantes sectores residenciales e industriales que suponen un elevado incremento de las necesidades de suministro eléctrico en la zona. Entre ellos está el denominado "Plataforma Intermodal" con una solicitud de 45,2 MW de potencia. La alternativa inmediata para cubrir estas necesidades consistiría en la ampliación de las subestaciones existentes, lo cual plantea serios inconvenientes. La primera subestación descrita se encuentra situada dentro del casco urbano, por lo que se desaconseja cualquier reforma o ampliación debido al impacto socio-ambiental que esto conlleva. Además, las líneas de alimentación a 66kV no tienen capacidad suficiente para los volúmenes de demanda eléctrica que se requieren.

Respecto a la segunda subestación, presenta varios inconvenientes de muy compleja resolución. El primero de ellos, es relativo a su capacidad de trasformación, cuya ampliación no resulta factible, puesto que las dos unidades de transformación instaladas presentan unos niveles de saturación tales que aun incrementando el parque con una tercera unidad (máximo posible) la potencia disponible no alcanzaría a satisfacer las necesidades demandadas. El segundo inconveniente es relativo al espacio físico disponible. Para poder incorporar esa tercera unidad se haría necesario llevar a cabo una ampliación de los terrenos de la instalación, los cuales se encuentran precisamente dentro del PAI de la "Plataforma Intermodal", en la que no se contempla la expansión de la superficie ocupada actualmente. Ya por último y como tercer inconveniente, mencionar que la capacidad de las líneas de alimentación a la tensión de 132 kV se encuentra igualmente saturada, no admitiendo sin reformas severas elevar esa capacidad.

Lo anteriormente descrito conduce a la necesidad de ejecutar una nueva subestación, denominada ST Assegador, en un emplazamiento compatible con los nuevos desarrollos urbanísticos previstos, que resuelva las necesidades de suministro eléctrico y permita contar con unas infraestructuras eléctricas que aumenten la calidad, garantía y prestaciones de este servicio de acuerdo a las exigencias de la sociedad actual.

Para la conexión de la ST Assegador con la red de transporte, está prevista en la planificación sectorial 2015-2020, la línea eléctrica a 220 kV con entrada/salida desde la L.E. existente a 220kV ST. Betxí – ST. La Plana a la mencionada ST. La línea aérea en proyecto tendrá una longitud de aproximada de 736 m.

El recorrido aéreo se inicia en el apoyo Ap40.1 de derivación y finaliza en la ST. Assegador. El apoyo Ap40.1 de derivación, se instalará bajo línea entre los apoyos Ap40 y Ap41 de la línea existente a 220kV ST. Betxí – ST. La Plana, procediendo al retensado y reposición de la fibra óptica de este tramo tras su instalación. Consta de 4 apoyos metálicos constituidos por perfiles angulares de lados iguales organizados en celosía doble. La cimentación de los apoyos se realiza mediante cuatro macizos independientes, uno por cada pata. Tiene doble

PROYECTO: L.E. A 220KV (DC) E-S ST ASSEGADOR DE LA L.E. EXISTENTE A 220KV ST. BETXÍ – ST. LA PLANA

ID.: 100093721-6-0-0000-RE-IBDEL-3706 REV.: 00 HOJA 4 DE 13

circuito dúplex, con conductor de aluminio-acero tipo LA-455 (Condor-AW) y potencia máxima por circuito de 782 MVA. La línea lleva dos cables de tierra de acero, con fibra óptica incorporada del tipo OPGW. El aislamiento está diseñado con cadenas de composite.

La obra civil se iniciará una vez obtenidos los permisos y derechos de servidumbre. Se procederá a la apertura y mejora de accesos, apertura de huecos para cimentaciones, hormigonado, montaje e izado de apoyos y tendido y engrapado de cables. Finalmente se procederá a la retirada de tierras y materiales y restauración de la zona.

Este proyecto sustituye al presentado en fecha 21 de noviembre de 2011, con expediente ATLINE/2011/171/12.

1.2 Objeto y situación administrativa

El presente Proyecto se redacta con la finalidad de tramitar la correspondiente aprobación por parte del órgano sustantivo de la Administración en materia de energía, así como obtener las autorizaciones que concurren en la ejecución por parte de otras administraciones y organismos tutelares de diversas competencias y, en su caso, actualizar la documentación presentada con anterioridad en las mismas.

Al efecto, el Proyecto tiene en cuenta las normas que el Ministerio de Industria, Comercio y Turismo recoge en el Reglamento sobre condiciones técnicas y garantías de seguridad en líneas eléctricas de alta tensión y sus instrucciones técnicas complementarias ITC-LAT 01 a 09 (en adelante Reglamento), conforme con el Real Decreto 223/2008, de 15 de febrero (publicado en el B.O.E. nº 68 de 19 de marzo de 2008), y demás normativa técnica aplicable.

Las características de la línea eléctrica se describen en los siguientes apartados.

1.3 Emplazamiento de la instalación

La línea eléctrica del objeto se halla en la provincia de CASTELLÓN, en la Comunidad Valenciana.

La localización de la instalación queda reflejada en el plano de situación y emplazamiento adjunto en el apartado de Planos.

1.4 Descripción del trazado de la línea

La línea eléctrica del presente Proyecto tiene una longitud aproximada de 736 m de doble circuito íntegramente aéreos.

Tiene su origen en el nuevo apoyo de entronque Ap40.1 con la actual línea eléctrica a 220kV entre las subestaciones de Betxí y La Plana, a partir del cual continuará en aéreo hasta la subestación de Assegador.

PROYECTO: L.E. A 220KV (DC) E-S ST ASSEGADOR DE LA L.E. EXISTENTE A 220KV ST. BETXÍ – ST. LA PLANA

ID.: 100093721-6-0-0000-RE-IBDEL-3706

REV.: 00

HOJA 5 DE 13

A continuación se indican las provincias y términos municipales afectados:

TÉRMINO MUNICIPAL	PROVINCIA	LONGITUD AFECTADA (m)
TERMINO MUNICIPAL DE VILA-REAL	CASTELLÓN	736

Las coordenadas de los apoyos son las siguientes:

Nº	COORDENADAS (ETRS-89 HUSO 30)		
	X	Y	Z
	(m)	(m)	(m)
40.1	746770,37	4422303,30	32,07
1	746896,07	4422181,39	29,89
2	746967,62	4421883,20	28,59
3	747147,28	4421764,95	26,73
ST. ASSEGADOR	747180,76	4421785,08	26,53

1.5 <u>Titular de la instalación</u>

El titular de la instalación objeto de este Proyecto es RED ELÉCTRICA DE ESPAÑA, S.A.U. (REE).

PROYECTO: L.E. A 220KV (DC) E-S ST ASSEGADOR DE LA L.E. EXISTENTE A 220KV ST. BETXÍ – ST. LA PLANA

ID.: 100093721-6-0-0000-RE-IBDEL-3706 REV.: 00 HOJA 6 DE 13

1.6 Características generales de la instalación

1.6.1 <u>CARACTERÍSTICAS GENERALES DE LA LÍNEA</u>

La línea objeto del presente Proyecto tiene como principales características las que se indican a continuación:

GENERALES		
Sistema	Corriente Alterna Trifásica a 50Hz	
Tensión nominal (kV)	220	
Categoría de la línea	ESPECIAL	
Longitud total (m)	736	
Nº de circuitos	2	
Origen	LE 220kV ST. BETXÍ – ST. LA PLANA	
Final	ST ASSEGADOR	
Tipología de la línea	AÉREA	

Consta de:

TRAMO AÉREO		
Capacidad Transporte máxima Invierno (MVA x circuito)	901	
Capacidad Transporte máxima Verano (MVA x circuito)	782	
Tipo de conductor	LA-455 (CONDOR AW)	
N° de conductores por fase	2	
Configuración	HEXÁGONO	
Tipo de cable de fibra óptica	OPGW	
Zona de aplicación	А	

1.6.2 PLAZO DE EJECUCIÓN

La ejecución de la obra a realizar se estima en un plazo de 6 meses a partir del comienzo de la misma.

1.6.3 MATERIALES DE LA LÍNEA ELÉCTRICA

1.6.3.1 Materiales del tramo aéreo

1.6.3.1.1 Apoyos

Los apoyos son metálicos de perfiles de acero laminado en L formando una estructura en celosía doble con uniones atornilladas.

Las barras estarán unidas entre sí mediante chapas y tornillos de calidad 5.6, grado C.

Se ha escogido para esta línea los siguientes tipos de apoyo:

PROYECTO: L.E. A 220KV (DC) E-S ST ASSEGADOR DE LA L.E. EXISTENTE A 220KV ST. BETXÍ – ST. LA PLANA

ID.: 100093721-6-0-0000-RE-IBDEL-3706 REV.: 00 HOJA 7 DE 13

APOYO TIPO
22D18B/B12
D2A3-AC
D2A3-AB
D2A4-FL-AA

Todos los apoyos utilizados en la línea cumplen con los requisitos de la ITC-LAT-07 y las características técnicas de sus componentes responden a lo indicado en las normas UNE aplicables o normas o especificaciones técnicas reconocidas.

Para impedir la escalada de los apoyos frecuentados se instalarán antiescalos hasta una altura de 2,5 m.

Se pueden ver los esquemas de los apoyos así como sus principales dimensiones y características en el apartado de Planos.

1.6.3.1.2 <u>Conductor</u>

Los conductores de la línea proyectada serán de aluminio – acero (Al-Ac), siendo sus principales características las siguientes:

Tipo de cable	LA-455 (CÓNDOR AW)
Diámetro aparente (mm)	27,72
Sección Al (mm²)	402,3
Sección Aw (mm²)	52,2
Sección total (mm²)	454,5
Carga de rotura (daN)	12.681
Módulo de elasticidad (daN/ mm²)	6.600
Resistencia eléctrica a 20° C (Ohm/km)	0,0718
Composición ((Al + Ac)	54 x 2,82 + 7 x 2,82
Masa (kg/m)	1,457
Coef. de dilatación lineal (°C ⁻¹)	19,5 x 10-6

1.6.3.1.3 <u>Cable de tierra y/o compuesto tierra-óptico</u>

En toda su longitud la línea llevará dos cables tipo OPGW, de acero galvanizado, con fibra óptica incorporada en el interior de un tubo de aluminio, cuyas principales características son:

CARACTERÍSTICAS del CABLE DE FIBRA ÓPTICA		
Tipo de cable	OPGW-25-48	
Nº de FIBRAS	48	
Diámetro aparente (mm)	17,0÷18,25	
Sección total (mm²)	164÷170	
Radio de curvatura mínimo (mm)	≤800	
Intensidad de C/C (kA)	≥25	
Tiempo (sg.)	0,3	
Carga de rotura (daN)	≥9500	
Resistencia en c.c. a 20°C (ohmios/Km)	≤0,6	
Masa (kg/m)	0,7÷0,9	

PROYECTO: L.E. A 220KV (DC) E-S ST ASSEGADOR DE LA L.E. EXISTENTE A 220KV ST. BETXÍ – ST. LA PLANA

ID.: 100093721-6-0-0000-RE-IBDEL-3706 REV.: 00 HOJA 8 DE 13

1.6.3.1.4 Cajas de empalme fibra óptica para cable de tierra compuesto tierra-óptico

La continuidad de los cables de fibra óptica se realizará mediante la utilización de cajas de empalme para cables de fibra óptica según especificación de REE, con las siguientes características principales:

- Las cajas serán metálicas de acero resistente al ácido, preferiblemente de acero inoxidable pudiendo ser de acero galvanizado en caliente para el caso de aplicaciones aéreas y tendrán un grado de protección IP659XS como mínimo.
- Las cajas tendrán capacidad para 24, 48 ó 96 empalmes. Dependiendo del nº de empalmes podrán albergar desde 3 bandejas de empalmes. Cada bandeja albergará las fibras de un tubo o cinta hasta un máximo de 12 fibras para las cajas de 24 y 48 fibras y 24 para las de 96 fibras.
- La bandeja de empalmes de cualquiera de los modelos anteriores deberán ser idénticas e intercambiables. Dispondrán de un sistema de fijación para evitar su movimiento involuntario.
- Las cajas se podrán abrir y cerrar repetidamente sin necesidad de herramientas especiales, o materiales adicionales.
- La caja llevará en su parte posterior los dispositivos o pletinas de fijación a la torre manteniendo el grado de protección previsto para el conjunto.

1.6.3.1.5 Aislamiento

En la siguiente tabla se indican, según apartado 4.4 de la ITC-LAT 07, los niveles de aislamiento correspondientes a este proyecto:

TENSIÓN NOMINAL DE LA RED (kV)	220
Tensión más elevada de la Red (kV eficaces)	245
Tensión soportada a frecuencia industrial bajo lluvia (50Hz) (kV eficaces)	460
Tensión soportada a impulso tipo rayo 1,2/50 µs(kV cresta)	1050

El aislamiento en las cadenas de amarre estará constituido por dos elementos de composite tipo 11 en cadena doble.

La gama de aisladores utilizados está de acuerdo con la ITC-LAT-07 del Reglamento y con las principales normas internacionales y nacionales.

Las características eléctrico-mecánicas del aislador son las siguientes:

CARACTERÍSTICAS		
Tipo aislador	Bastón Tipo 11	
Disposición	Dx	
Nivel de contaminación	IV Muy fuerte	
Grado de aislamiento (mm/Kv)	31	
Línea de fuga (mm)	7.595	
Carga de rotura (kN)	160	
Longitud total del aislador (mm)	2.500	

Las cadenas cumplen las condiciones de protección de la avifauna según Real Decreto 1432/2008, de 29 de agosto.

PROYECTO: L.E. A 220KV (DC) E-S ST ASSEGADOR DE LA L.E. EXISTENTE A 220KV ST. BETXÍ – ST. LA PLANA

ID.: 100093721-6-0-0000-RE-IBDEL-3706 REV.: 00 HOJA 9 DE 13

Se pueden ver los esquemas así como sus principales dimensiones y características en el apartado de Planos.

1.6.3.1.6 <u>Herrajes</u>

Los herrajes, medio de unión del cable conductor con la cadena de aisladores y de ésta al apoyo, están dimensionados mecánicamente para soportar las cargas máximas de los conductores con los coeficientes de seguridad reglamentarios, siendo su material acero estampado y galvanizado en caliente como medio de protección anticorrosiva, y están de acuerdo con la ITC-LAT-07 del Reglamento.

La grapa de suspensión es del tipo armada. Está compuesta por un manguito de neopreno, aplicado directamente sobre el cable, unas varillas preformadas, que suavizan el ángulo de salida de la grapa, y el cuerpo de la misma que aprieta el conjunto y pende de la cadena de aisladores.

Las grapas de suspensión armada serán dobles cuando el ángulo de salida de la grapa supere en cualquiera de los lados 20º o cuando la suma de ambos ángulos sea mayor de 30º

La grapa de amarre es del tipo compresión. Está compuesta por un manguito doble, uno de aluminio y otro de acero, que se comprimen contra el cable.

Los conjuntos de herrajes que en las cadenas empleadas en la línea son:

CONDUCTOR

TIPO DE CONFIGURACIÓN	CONJUNTO DE HERRAJE	CARGA DE ROTURA (kN)
AMARRE DOBLE	SF2H2226	320
PÓRTICO	SF2H2227	320

CABLE COMPUESTO TIERRA-ÓPTICO

TIPO DE CONFIGURACIÓN	CONJUNTO DE HERRAJE	CARGA DE ROTURA (kN)
AMARRE	SF4H128	140

Su forma y disposición se puede observar en el apartado de Planos.

1.6.3.1.7 <u>Puestas a tierra en el tramo aéreo</u>

El sistema de puesta a tierra de los apoyos se realizará según establece el apartado 7 de la instrucción técnica complementaria ITC-LAT 07.

Para poder identificar los apoyos en los que se debe garantizar los valores admisibles de las tensiones de contacto, se establece la siguiente clasificación de los apoyos según su ubicación:

 Apoyos No Frecuentados. Son los situados en lugares que no son de acceso público o donde el acceso de personas es poco frecuente, como bosques, campo abierto, campos de labranza, etc.

PROYECTO: L.E. A 220KV (DC) E-S ST ASSEGADOR DE LA L.E. EXISTENTE A 220KV ST. BETXÍ – ST. LA PLANA

ID.: 100093721-6-0-0000-RE-IBDEL-3706 REV.: 00 HOJA 10 DE 13

 Apoyos Frecuentados. Son los situados en lugares de acceso público y donde la presencia de personas ajenas a la instalación eléctrica es frecuente: donde se espere que las personas se queden durante tiempo relativamente largo, algunas horas al día durante varias semanas, o por un tiempo corto pero muchas veces al día.

A su vez, los apoyos frecuentados se clasifican en dos subtipos:

- Apoyos frecuentados con calzado. Estos apoyos serán los situados en lugares donde se puede suponer, razonadamente, que las personas estén calzadas, como pavimentos de carreteras públicas, lugares de aparcamiento, etc.
- Apoyos frecuentados sin calzado. Estos apoyos serán los situados en lugares como jardines, piscinas, camping, áreas recreativas donde las personas puedan estar con los pies desnudos.

La clasificación de los apoyos de este proyecto se realiza en el apartado 4.1.5.1 Clasificación de los apoyos según su ubicación.

1.6.3.1.8 Cimentaciones

La cimentación de los apoyos se realiza mediante cuatro macizos independientes de hormigón en masa, una por cada pata, suficientemente separados entre sí para permitir su construcción.

Los macizos son cilíndricos con un ensanchamiento troncocónico inferior que les da su forma característica de "pata de elefante". Para la fabricación del hormigón se utilizará el cemento de tipo Portland CEM II/AS 32,5 y ésta se hará según tipificación EHE-08.

Se pueden ver las dimensiones y características de las cimentaciones en el apartado de Planos.

1.6.3.1.9 Amortiguadores

Se instalarán amortiguadores tipo Stockbridge e irán instalados directamente sobre el cable y sobre las varillas de protección en el caso de la fibra óptica.

1.6.3.1.10 Salvapájaros

Si la autoridad competente lo considera necesario, se instalarán protecciones para la avifauna mediante salvapájaros.

1.6.3.1.11 Separadores

Para el conductor se instalarán separadores rígidos de 400 mm de separación.

1.6.3.1.12 <u>Numeración, señalización y aviso de riesgo eléctrico</u>

Cada apoyo se identificará individualmente de tal manera que la identificación sea legible desde el suelo, tal como se indica en el punto 2.4.7 de la ITC-LAT 07 del Reglamento.

PROYECTO: L.E. A 220KV (DC) E-S ST ASSEGADOR DE LA L.E. EXISTENTE A 220KV ST. BETXÍ – ST. LA PLANA

ID.: 100093721-6-0-0000-RE-IBDEL-3706 REV.: 00 HOJA 11 DE 13

1.7 Afecciones

1.7.1 NORMAS GENERALES

Las normas generales sobre afecciones en líneas eléctricas están recogidas en el punto 5 de la ITC-LAT-06 e ITC-LAT-07 del Reglamento.

1.7.2 DISTANCIAS MÍNIMAS DE SEGURIDAD EN LÍNEAS AÉREAS

A continuación se incluye la tabla base para determinar distancias de seguridad para este proyecto de ejecución.

TENSIÓN NOMINAL DE LA RED	TENSIÓN MÁS ELEVADA DE LA RED	D _{el}	D _{pp}
(kV)	(kV)	(m)	(m)
220	245	1,70	2,00

Siendo:

- D_{el}: Distancia de aislamiento en el aire mínima especificada, para prevenir una descarga disruptiva entre conductores de fase y objetos a potencial tierra en sobretensiones de frente lento o rápido. D_{el} puede ser tanto interna (distancias del conductor a la estructura del apoyo) como externa (distancias del conductor a cualquier obstáculo.
- D_{pp}: Distancia de aislamiento en el aire mínima especificada, para prevenir una descarga disruptiva entre conductores de fase durante sobretensiones de frente lento o rápido. D_{pp} es una distancia interna.

La seguridad en los cruzamientos se reforzará con diversas medidas adoptadas a lo largo de la línea. Estas medidas se resumen a continuación:

- En las cadenas de amarre se utilizaran grapas de compresión.
- El conductor y el cable de tierra tienen una carga de rotura muy superior a 1.200 daN.

1.7.3 <u>DISTANCIAS EXTERNAS. DISTANCIAS A AFECCIONES</u>

1.7.3.1 Distancias al terreno, caminos, sendas y cursos de aqua no navegables

De acuerdo a lo establecido en el punto 5.5 de la ITC-LAT-07 del Reglamento, la altura de los apoyos será la necesaria para que los conductores, con su máxima flecha vertical, según las hipótesis de temperatura y de hielo definidas en el punto 3.2.3 de la ITC-LAT-07 del Reglamento, queden situados por encima de cualquier punto del terreno, senda, camino vereda o superficie de agua no navegable a una altura mínima de:

$$D_{add} + D_{el} = 5.3 + D_{el}$$
 (m)

con un mínimo de 6 m.

Los valores de D_{el} se han indicado anteriormente en función de la tensión más elevada de la línea.

En el presente proyecto la altura mínima cumple con los valores mínimos reglamentarios, siendo:

PROYECTO: L.E. A 220KV (DC) E-S ST ASSEGADOR DE LA L.E. EXISTENTE A 220KV ST. BETXÍ – ST. LA PLANA

ID.: 100093721-6-0-0000-RE-IBDEL-3706 REV.: 00 HOJA 12 DE 13

TENSIÓN NOMINAL DE LA RED	TENSIÓN MÁS ELEVADA DE LA RED	D _{el}	D _{add} +D _{el}
(kV)	(kV)	(m)	(m)
220	245	1,70	7,00

A estas distancias les corresponde las siguientes excepciones:

 En zonas de difícil acceso, las distancias mínimas a terrenos podrán disminuirse en un metro.

En este proyecto la distancia mínima de los conductores al terreno es 13,73 m. Por tanto, superior a la mínima establecida en los párrafos anteriores.

1.7.4 CRUZAMIENTOS DEL PROYECTO

1.7.4.1 Relación de cruzamientos de línea en el recorrido aéreo

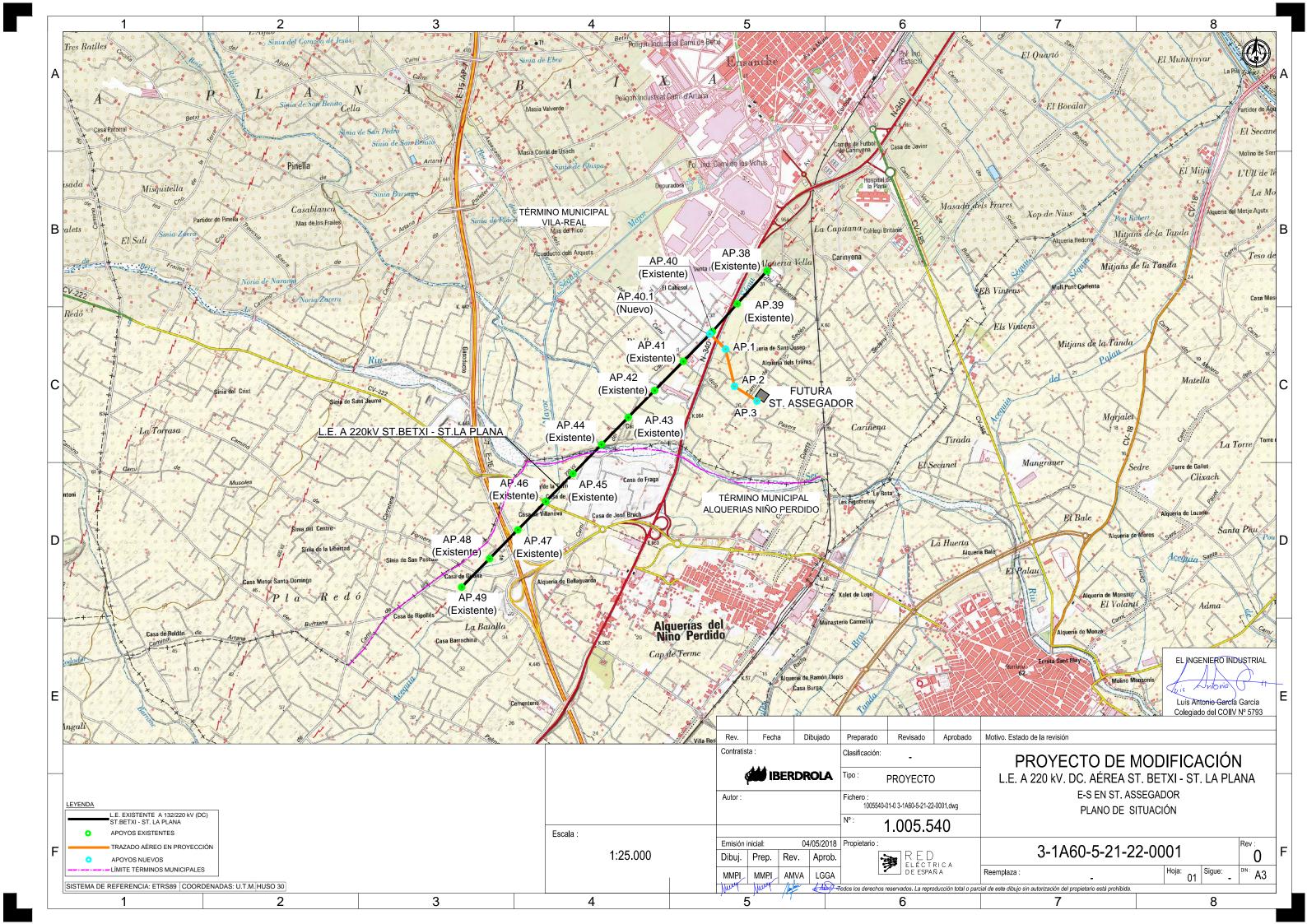
Nº Cruz	Apoyo ant.	Apoyo post.	Long.	Distancia al apoyo más próximo (m)	Punto del elemento cruzado	Tipo de cruzamiento	D _{mínima} vertical	D _{real}	Organismo o propietario afectado
			(m)		(p.k.)		(m)	(m)	
2	40.1	1	3	83 (Ap.40.1)		ACEQUIA DE BAIX	7	20	COMUNIDAD DE REGANTES VILA-REAL

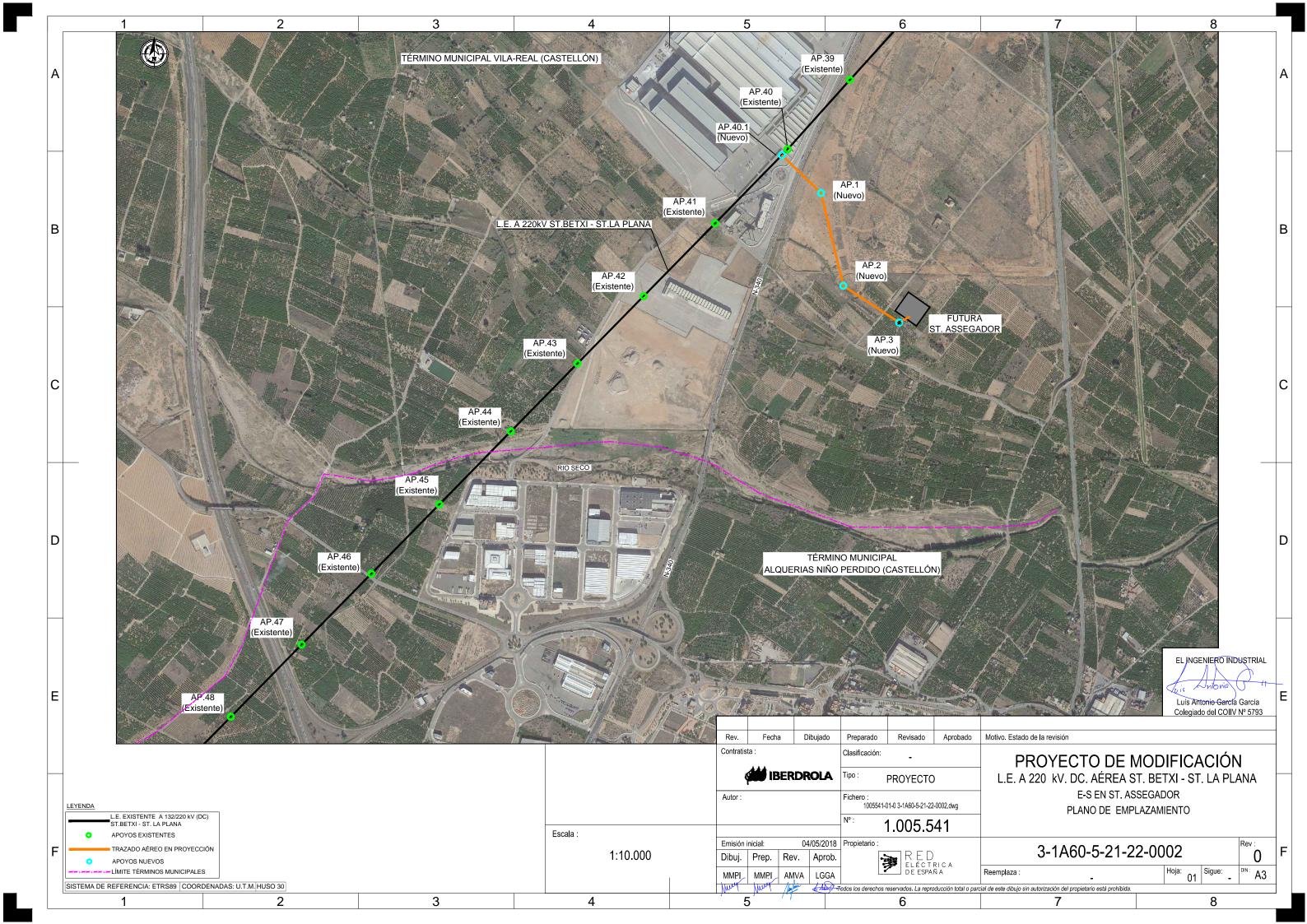
1.7.5 CONDICIONADOS ESPECIALES

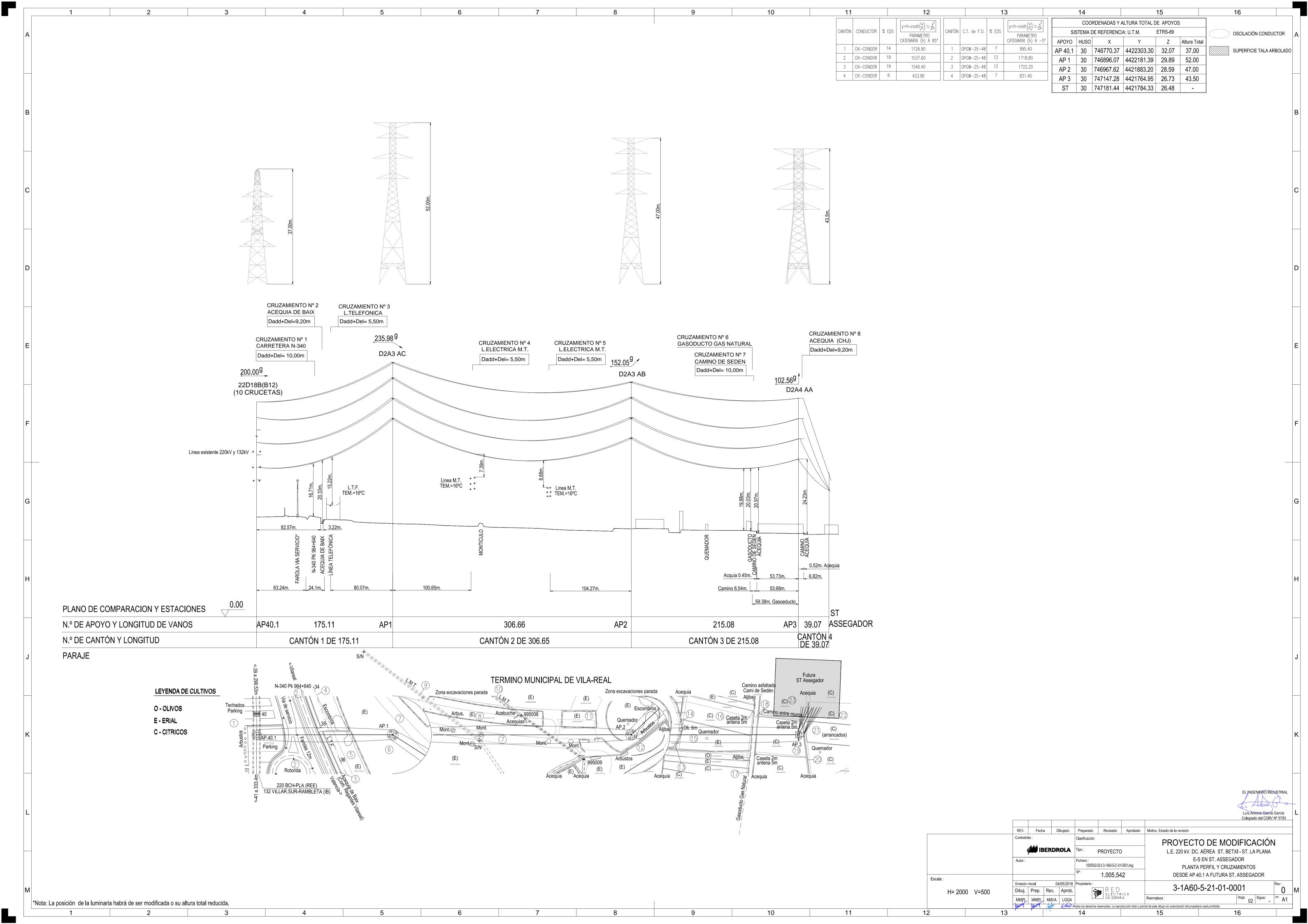
1.7.5.1 Uso de balizas

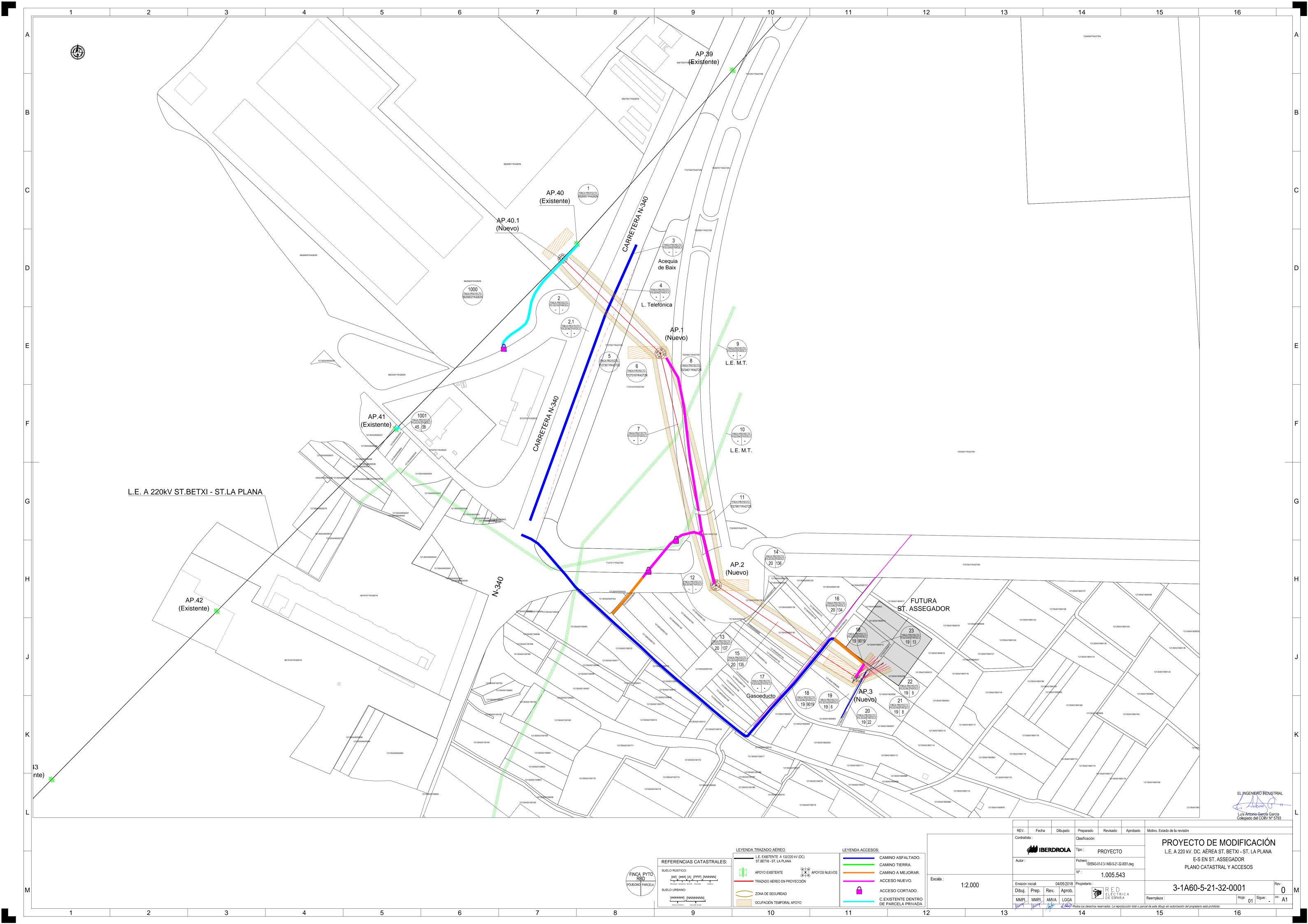
Se balizarán los cruzamientos con carreteras, autovías, autopistas, etc. como resultado de condicionados al proyecto de construcción.

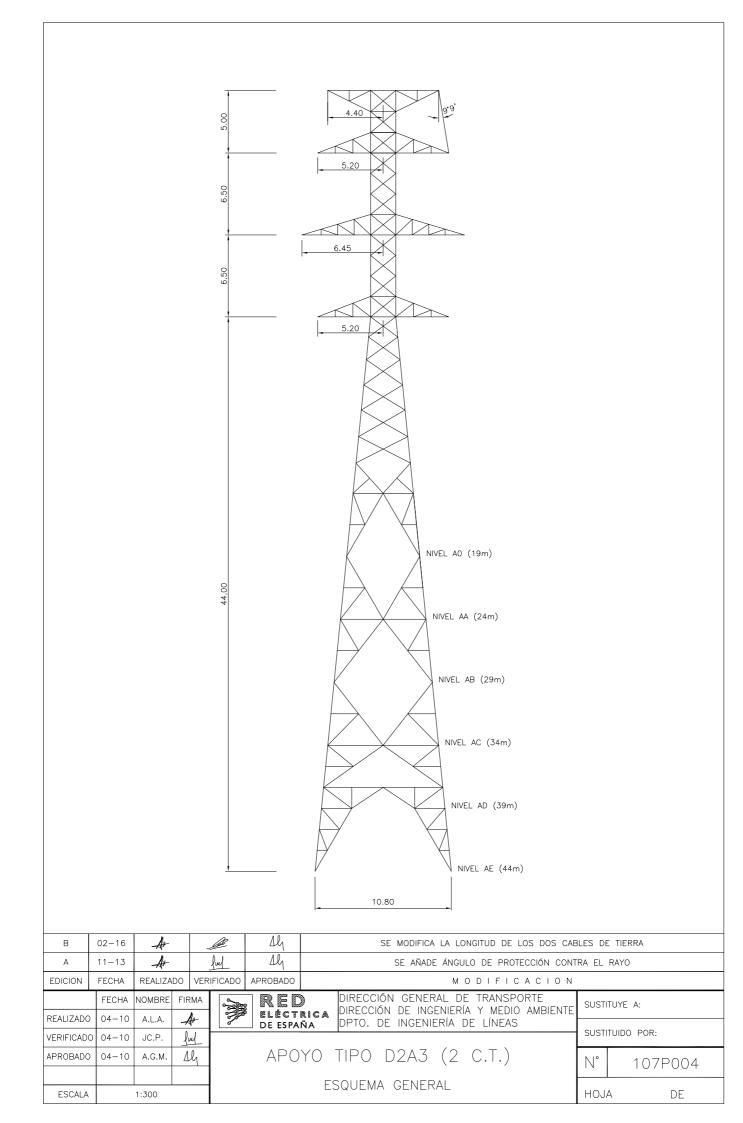
Asimismo, se instalarán salvapájaros y disuasores de nidificación como resultado de condicionados al proyecto de construcción.

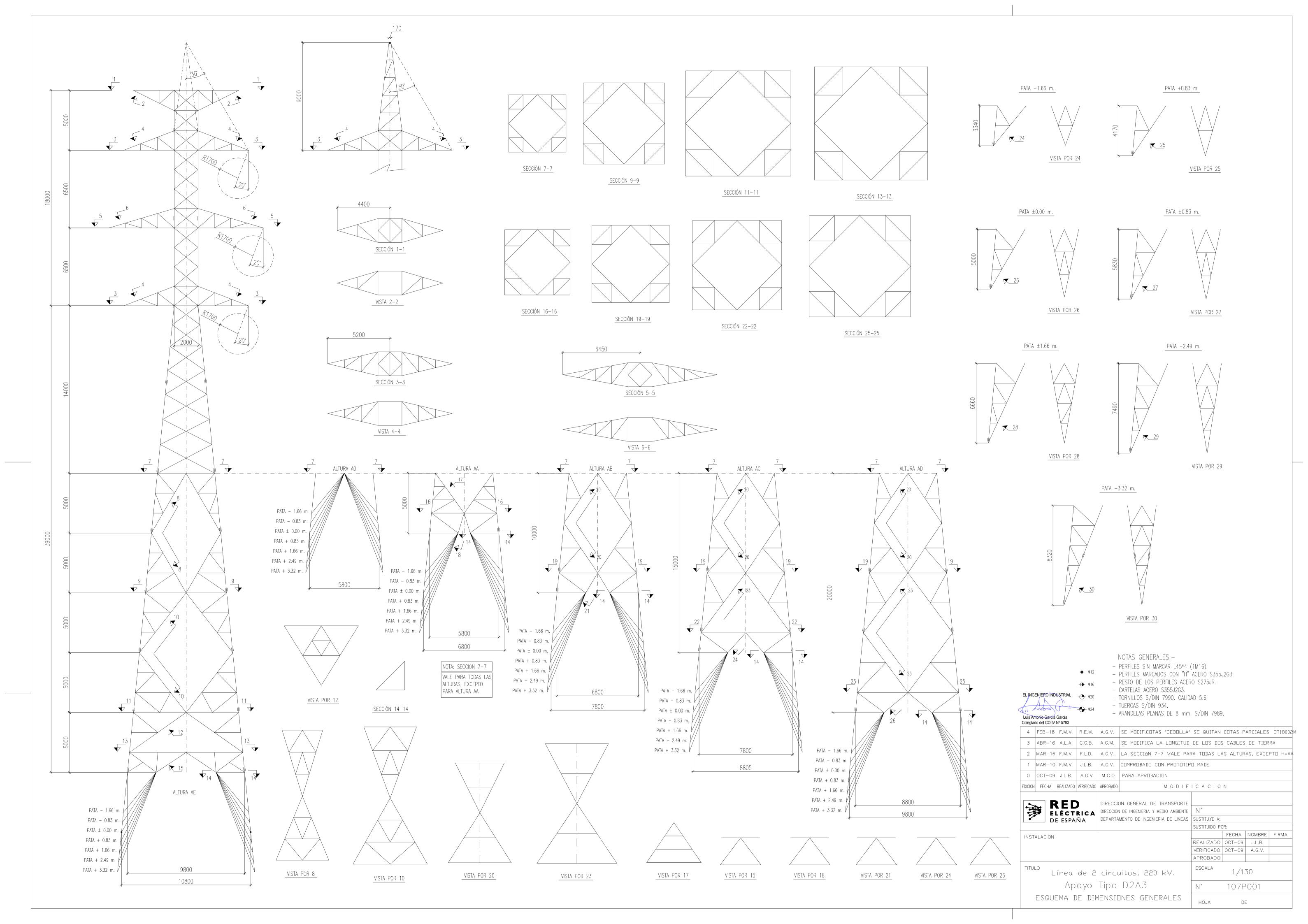


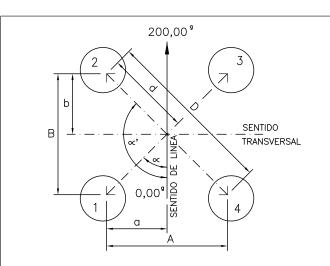

PROYECTO: L.E. A 220KV (DC) E-S ST ASSEGADOR DE LA L.E. EXISTENTE A 220KV ST. BETXÍ – ST. LA PLANA

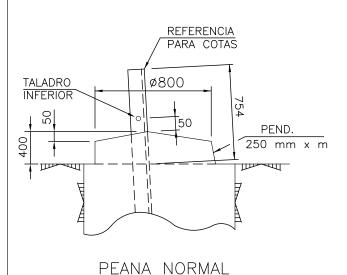

ID.: 100093721-6-0-0000-RE-IBDEL-3706 REV.: 00 HOJA 13 DE 13

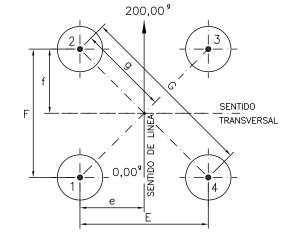

2. PLANOS

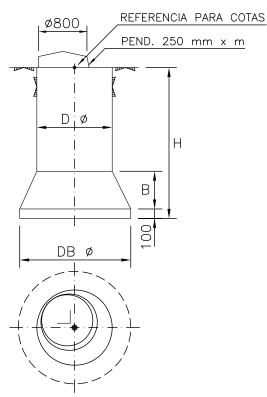

TÍTULO	Nº PLANO	HOJAS	REV.
SITUACIÓN	1.005.540	1	0
EMPLAZAMIENTO	1.005.541	1	0
PLANTA, PERFIL Y CRUZAMIENTOS	1.005.542	2	0
PLANTA CATASTRAL Y ACCESOS	1.005.543	1	0
APOYO TIPO D2A3 (2 CT) ESQUEMA GENERAL	107P004	1	В
APOYO TIPO D2A3 ESQUEMA DE DIMENSIONES GENERALES	107P001	1	4
APOYO TIPO D2A3 CIMENTACIÓN	052C453	1	А
APOYO TIPO 22D18B ESQUEMA (APOYO 40.1)	1.005.551	1	0
APOYO 22D18B CIMENTACIÓN	976.851	1	0
PTA APOYOS CIMENTACIÓN TIPO PATAS SEPARADAS	PAT001	1	0
PTA APOYO NO FRECUENTADO – PATAS SEPARADAS	PAT002	1	D
PTA APOYO FRECUENTADO – PATAS SEPARADAS	PAT004	1	С
CADENA DE AMARRE 220KV. DOBLE-DUPLEX	SF2H2226	1	С
CONJUNTO DE AMARRE. CABLE COMPUESTO (TIERRA – OPTICO)	SF4H128	1	Е
GRAPA DE AMARRE	G001	1	Е
AISLAMIENTO COMPUESTO	A002	1	В
AMORTIGUADOR FIBRA OPTICA	SF4H027	1	F
SEPARADOR RIGIDO CONDUCTOR DUPLEX	1.004.773	1	0








AEH 400


14ø16 PARA REALCE +0,25 Y +0,50 24ø16 PARA REALCE +0,75 Y +1,00

		ANG	JLOS	REPLANTEO DE ANCLAJES					
		α =G HOYO 1	α'=G HOYO 2	Α	В	D	а	b	d
A00	±0	50,00	150,00	4651	4651	6577	2325	2325	3289
	-1,66	50,00	150,00	5399	5399	7635	2699	2699	3817
	-0,83	50,00	150,00	5565	5565	7870	2782	2782	3935
	±0	50,00	150,00	5731	5731	8104	2865	2865	4052
A0	+0,83	50,00	150,00	5897	5897	8339	2948	2948	4169
	+1,66	50,00	150,00	6063	6063	8574	3031	3031	4287
	+2,49	50,00	150,00	6229	6229	8809	3114	3114	4404
	+3,32	50,00	150,00	6395	6395	9043	3197	3197	4522
	-1,66	50,00	150,00	6399	6399	9049	3199	3199	4525
	-0,83	50,00	150,00	6565	6565	9284	3282	3282	4642
	±0	50,00	150,00	6731	6731	9519	3365	3365	4759
AA	+0,83	50,00	150,00	6897	6897	9753	3448	3448	4877
	+1,66	50,00	150,00	7063	7063	9988	3531	3531	4994
	+2,49	50,00	150,00	7229	7229	10223	3614	3614	5111
	+3,32	50,00	150,00	7395	7395	10458	3697	3697	5229
	-1,66	50,00	150,00	7399	7399	10463	3699	3699	5232
	-0,83	50,00	150,00	7565	7565	10698	3782	3782	5349
	±0	50,00	150,00	7731	7731	10933	3865	3865	5466
AB	+0,83	50,00	150,00	7897	7897	11167	3948	3948	5584
	+1,66	50,00	150,00	8063	8063	11402	4031	4031	5701
	+2,49	50,00	150,00	8229	8229	11637	4114	4114	5819
	+3,32	50,00	150,00	8395	8395	11872	4197	4197	5936
	-1,66	50,00	150,00	8399	8399	11878	4199	4199	5939
	-0,83	50,00	150,00	8565	8565	12112	4282	4282	6056
	±0	50,00	150,00	8731	8731	12347	4365	4365	6173
AC	+0,83	50,00	150,00	8897	8897	12582	4448	4448	6291
	+1,66	50,00	150,00	9063	9063	12817	4531	4531	6408
	+2,49	50,00	150,00	9229	9229	13051	4614	4614	6526
	+3,32	50,00	150,00	9395	9395	13286	4697	4697	6643
	-1,66	50,00	150,00	9399	9399	13292	4699	4699	6646
	-0,83	50,00	150,00	9565	9565	13526	4782	4782	6763
	±0	50,00	150,00	9731	9731	13761	4865	4865	6881
AD	+0,83	50,00	150,00	9897	9897	13996	4948	4948	6998
	+1,66	50,00	150,00	10063	10063	14231	5031	5031	7115
	+2,49	50,00	150,00	10229	10229	14465	5114	5114	7233
	+3,32	50,00	150,00	10395	10395	14700	5197	5197	7350
	-1,66	50,00	150,00	10399	10399	14706	5199	5199	7353
	-0,83	50,00	150,00	10565	10565	14941	5282	5282	7470
	±0	50,00	150,00	10731	10731	15175	5365	5365	7588
AE	+0,83	50,00	150,00	10897	10897	15410	5448	5448	7705
	+1,66	50,00	150,00	11063	11063	15645	5531	5531	7822
	+2,49	50,00	150,00	11229	11229	15880	5614	5614	7940
	+3,32	50,00	150,00	11395	11395	16114	5697	5697	8057

REPLANTEO DE ANCLAJES

ANGULOS

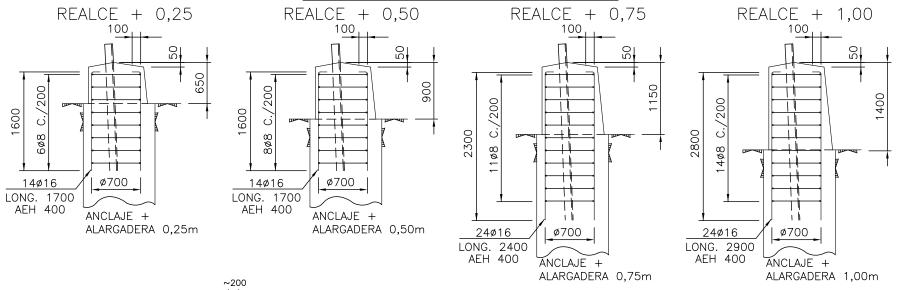
		E	F	G	е	f	g
A00	±0	5036	5036	7122	2518	2518	3561
	-1,66	5784	5784	8180	2892	2892	4090
	-0,83	5950	5950	8415	2975	2975	4207
	±0	6116	6116	8649	3058	3058	4325
A0	+0,83	6282	6282	8884	3141	3141	4442
	+1,66	6448	6448	9119	3224	3224	4559
	+2,49	6614	6614	9354	3307	3307	4677
	+3,32	6780	6780	9588	3390	3390	4794
	-1,66	6784	6784	9594	3392	3392	4797
	-0,83	6950	6950	9829	3475	3475	4914
	±0	7116	7116	10064	3558	3558	5032
AA	+0,83	7282	7282	10298	3641	3641	5149
	+1,66	7448	7448	10533	3724	3724	5267
	+2,49	7614	7614	10768	3807	3807	5384
	+3,32	7780	7780	11003	3890	3890	5501
	-1,66	7784	7784	11008	3892	3892	5504
	-0,83	7950	7950	11243	3975	3975	5622
	±0	8116	8116	11478	4058	4058	5739
AB	+0,83	8282	8282	11712	4141	4141	5856
	+1,66	8448	8448	11947	4224	4224	5974
	+2,49	8614	8614	12182	4307	4307	6091
3	+3,32	8780	8780	12417	4390	4390	6208
	-1,66	8784	8784	12423	4392	4392	6211
	-0,83	8950	8950	12657	4475	4475	6329
	±0	9116	9116	12892	4558	4558	6446
AC	+0,83	9282	9282	13127	4641	4641	6563
	+1,66	9448	9448	13362	4724	4724	6681
	+2,49	9614	9614	13596	4807	4807	6798
	+3,32	9780	9780	13831	4890	4890	6915
	-1,66	9784	9784	13837	4892	4892	6918
	-0,83	9950	9950	14071	4975	4975	7036
	±0	10116	10116	14306	5058	5058	7153
AD	+0,83	10282	10282	14541	5141	5141	7270
	+1,66	10448	10448	14776	5224	5224	7388
	+2,49	10614	10614	15010	5307	5307	7505
	+3,32	10780	10780	15245	5390	5390	7623
	-1,66	10784	10784	15251	5392	5392	7625
	-0,83	10950	10950	15486	5475	5475	7743
	±0	11116	11116	15720	5558	5558	7860
AE	+0,83	11282	11282	15955	5641	5641	7978
	+1,66	11448	11448	16190	5724	5724	8095
	+2,49	11614	11614	16425	5807	5807	8212
	+3,32	11780	11780	16659	5890	5890	8330

APERTURA DE HOYOS

EL INGENIERO INDUSTRIAL

Luís Antonio García García Colegiado del COIIV Nº 5793

RESISTENCIA CARACTERISTICA DEL HORMIGON 20 N/mm²


	CARACTERISTICAS DE LAS CIMENTACIONES							
TIPO DE	TIPO DE TIPO DE DIMENSIONES EN mm. VOLUMEN EN n							
TERRENO	CIMENT.	Dφ	DB Ø	Н	В	EXCAVACION 1 PATA	HORMIGONADO 1 PATA	
NORMAL	P.E.N.	1400	3200	4400	1300	11,10	11,30	
FLOJO	P.E.F.	2000	4400	4400	1700	24,00	24,21	

CIMENTACION PATA DE ELEFANTE

TORRE TIPO D2A3

INCLINACION DEL ANCLAJE TRANSVERSAL 99,50 mm/m SENTIDO DE LINEA 99,50 mm/m

CARACTER	REALCES	
DIMENSIONES	VOLUMEN m ³	
REALCES	ALTURA	HORMIGON PARA 1 REALCE
+0,25	650	0,37
+0,50	900	0,56
+0,75	1150	0,77
+1,00	1400	1,01

AEH 215

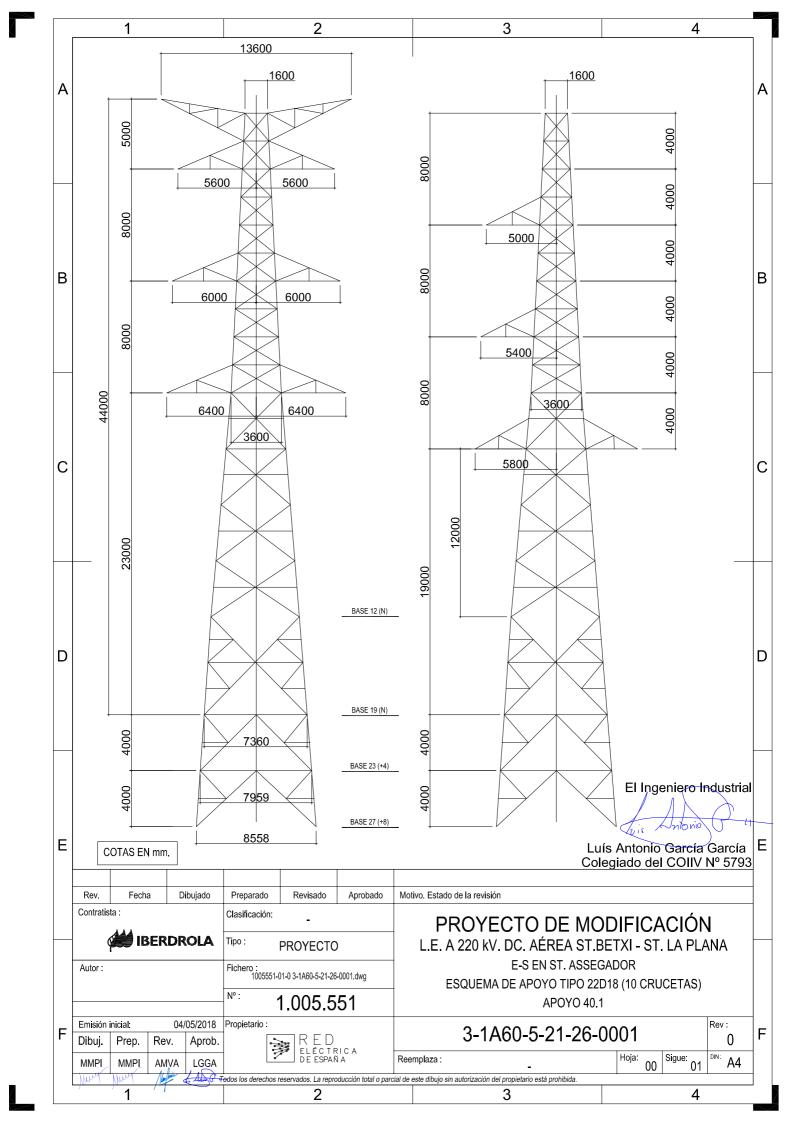
6 Ø8 PARA REALCE +0,25 8 Ø8 PARA REALCE +0,50

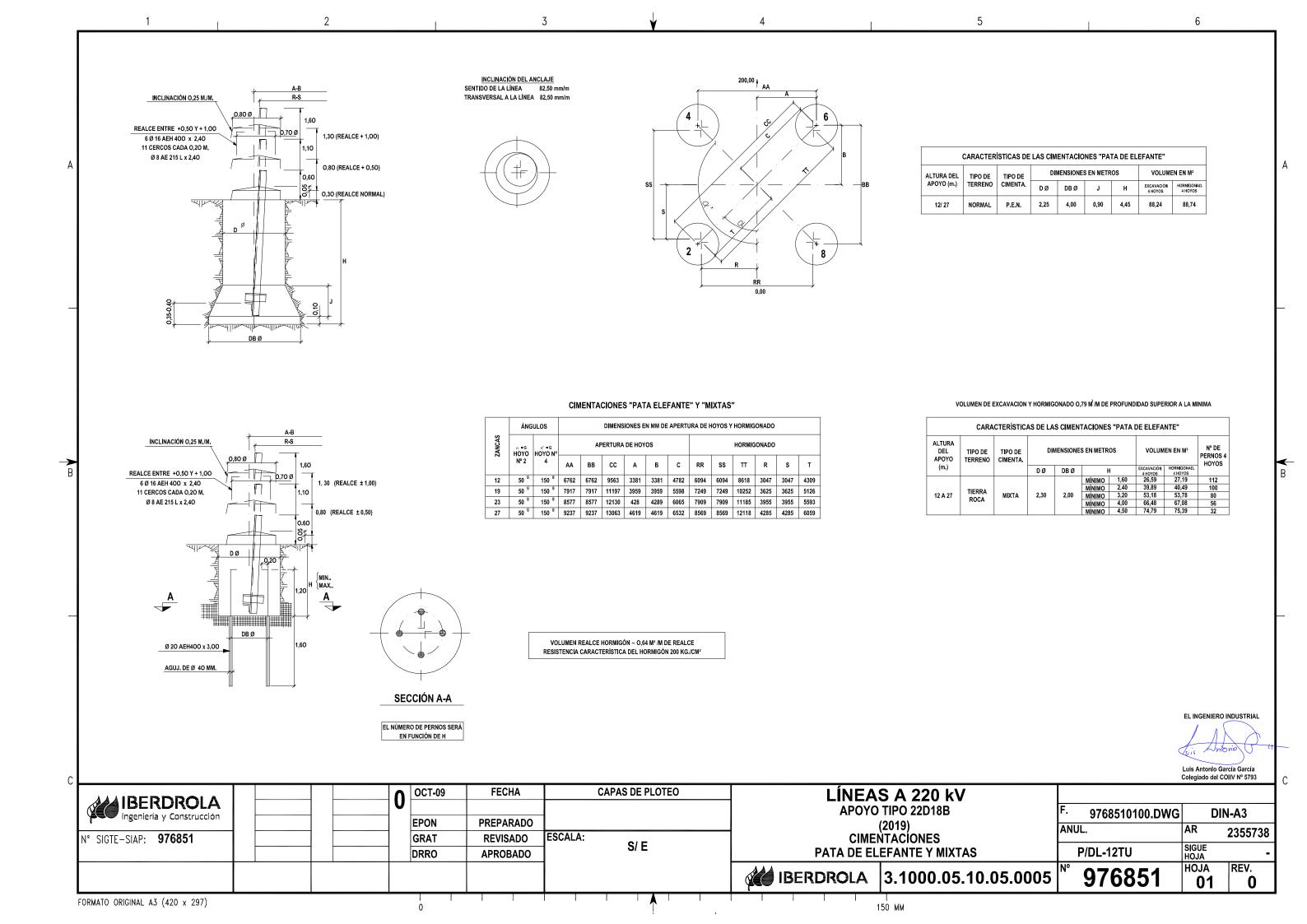
11ø8 PARA REALCE +0,75

14ø8 PARA REALCE +1,00

ARMADURAS PARA REALCES

							FECHA	NOMBRE	FIRMA	÷.
						REALIZADO	04-10	A.L.A.	A	3
						VERIFICADO	04-10	JC.P.	lul	
						APROBADO	04-10	A.G.M.	Alg	
Α	04-14	A	. w	Δlq	SE AÑADE BASE AOO					
DICION	FECHA	REALIZADO	VERIFICADO	APROBADO	M O D I F I C A C I O N	ESCALA				

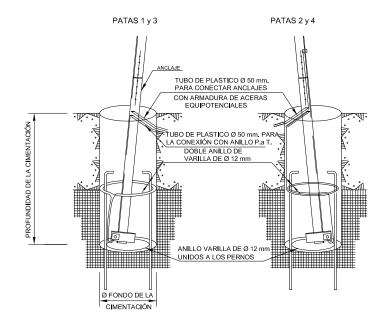

RED

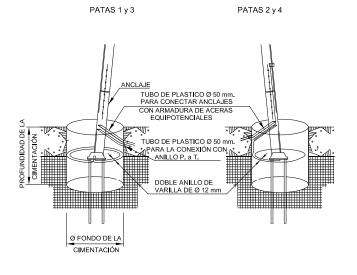

BLÉCTRICA

DIRECCION GENERAL DE TRANSPORTE

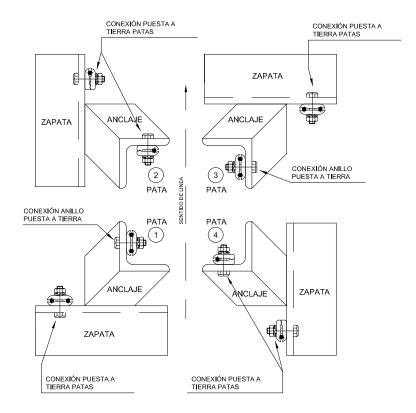
DIRECCION DE INGENIERIA Y MEDIO AMBIENTE

DEPARTAMENTO DE INGENIERIA DE LINEAS SUSTITUYE A: SUSTITUIDO POR: N° 052C453




CIMENTACIÓN PATA ELEFANTE

CIMENTACIÓN MIXTA


CIMENTACIÓN EN ROCA

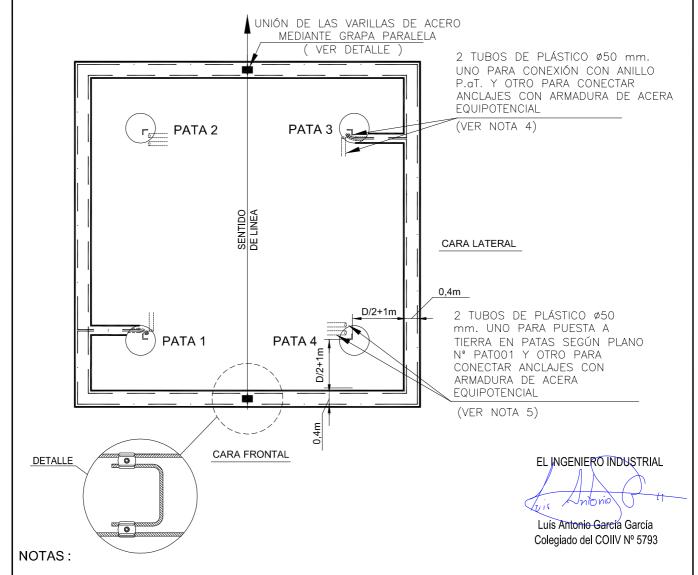
DETALLE CONEXIONES CON ZAPATAS Y ANCLAJE

- LA PUESTA A TIERRA DE LAS PATAS SE CONECTARAN A LAS ZAPATAS EN PATAS 1-3 Y A LAS ZAPATAS Y ANCLAJES EN PATAS 2-4.
- LOS ANILLOS DE PUESTA A TIERRA SE CONECTARAN A LA PARTE SUPERIOR DEL ANCLAJE EN PATAS 1-3.

IDENT	IFICAC	ION PATAS
2	A H	$\neg^{(3)}$
	SENTIDO DE LINEA	CARA LATERAL
1	CARA FRO	(4)

	FECHA	NOMBRE	FIRMA	
REALIZADO	09-13	A.L.A.	A	ľ
VERIFICADO	09-13	G.D.C.	₿¥	
APROBADO	09-13	A.G.M.	Δly	
	COALA.			1

Colegiado del COIIV Nº 5793 RED DIRECCION GENERAL DE TRANSPORTE DIRECCION DE INGENIERIA Y CONSTRUCCIÓN DE PARTAMENTO DE INGENIERIA DE LINEAS

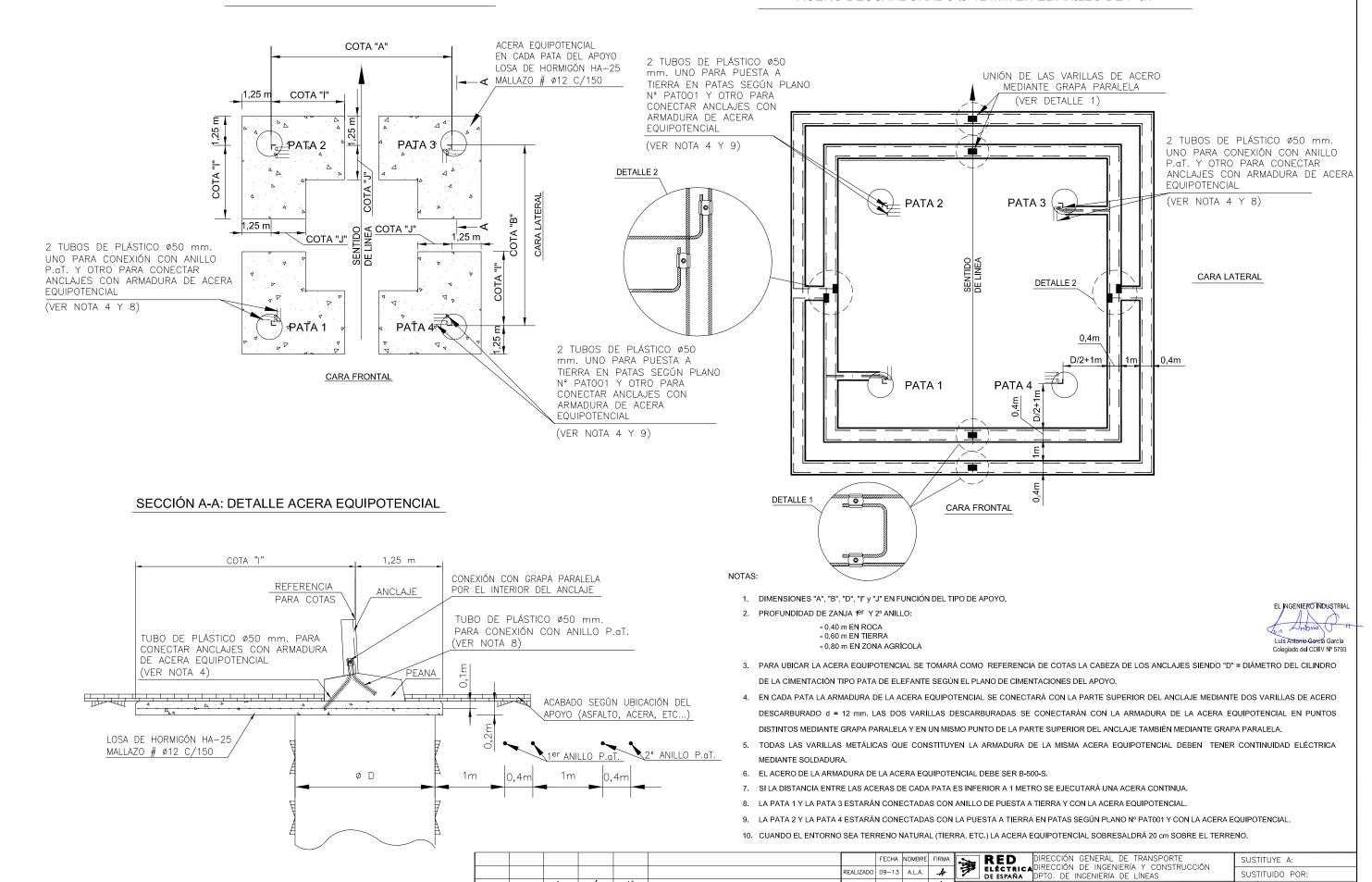

PUESTAS A TIERRA EN PATAS APOYOS CIMENTACIÓN TIPO PATAS SEPARADAS

SUSTITUIDO POR: PAT001 HOJA 1 DE 1

EL INGENIERO INDUSTRIAL

Luís Antonio García García

DISPOSICIÓN DE LAS ZANJAS Y DE LA VARILLA DE ACERO DESCARBURADO Ø 12 mm EN EL ANILLO DE P.aT.



- 1. PARA UBICAR EL ANILLO DE PUESTA A TIERRA SE TOMARÁN COMO REFERENCIA DE COTAS LA CABEZA DE LOS ANCLAJES SIENDO "D" = DIÁMETRO DEL CILINDRO DE LA CIMENTACIÓN TIPO PATAS SEPARADAS SEGÚN PLANO DE CIMENTACIONES DEL APOYO.
- 2. PROFUNDIDAD DE ZANJA:
 - 0,40 m EN ROCA.
 - 0,60 m EN TIERRA.
 - 0,80 m EN ZONA AGRÍGOLA.
- 3. INDEPENDIENTEMENTE DE QUE EL APOYO SEA FRECUENTADO O NO FRECUENTADO, TODAS LAS PATAS TENDRÁN DOS TUBOS DE PLÁSTICO Ø 50 mm.
- 4. LA PATA 1 Y LA PATA 3 ESTARÁN CONECTADAS CON ANILLO DE PUESTA A TIERRA Y SI EL APOYO ES FRECUENTADO CON LA ACERA EQUIPOTENCIAL.
- 5. LA PATA 2 Y 4 ESTARÁN CONECTADAS CON LA PUESTA A TIERRA EN PATAS SEGÚN PLANO Nº PAT001 Y SI EL APOYO ES FRECUENTADO CON LA ACERA EQUIPOTENCIAL.

D	08-14	R		Вı	14	SE MODIFICAN INDICACIONES DE TUBOS		
С	05-14	Æ		Вус	ΔL ₁ SE AÑADE TUBO PARA P.αT. PATAS			
В	04-14	Æ		βĸ	14	SE MODIFICA TÍTULO		
Α	10-13	A		βι	14	SE AÑADE TUBO PARA CONEXIÓN CON ACERA EQUIPOTENCIAL		
EDICION	FECHA	REALIZAD	00 \	/ERIFICADO	APROBADO	M O D I F I C A C I O N		
	FECHA	NOMBRE	FIRM		REC	DIRECCIÓN GENERAL DE TRANSPORTE DIRECCIÓN DE INGENIERÍA Y CONSTRUCCIÓN SUSTITUYE A:		
REALIZADO	09-13	A.L.A.	A		BLÉCT DE ESPA	NA DPTO. DE INGENIERÍA DE LÍNEAS		
VERIFICADO	09-13	G.D.C.	Ьc			SUSTITUIDO POR:		
APROBADO	09-13	A.G.M.	Δl			ANILLO DE PUESTA A TIERRA N APOYO NO FRECUENTADO (NF) N° PATOO2		
ESCALA Formato	A4					ENTACIÓN TIPO PATAS SEPARADAS		

DISPOSICIÓN Y DIMENSIONES DE LAS ACERAS EQUIPOTENCIALES

DISPOSICIÓN DE LAS ZANJAS Y DE LA VARILLA DE ACERO DESCARBURADO Ø 12 mm EN EL ANILLO DE P.aT.

Δh

& Aly

& Aly

05-14

10-13

R

A

EDICION FECHA REALIZADO VERIFICADO APROBADO

SE MODIFICAN INDICACIONES DE TUBOS

SE AÑADE TUBO PARA P.aT. PATAS

SE AÑADE UNION 2º ANILLO

MODIFICACION

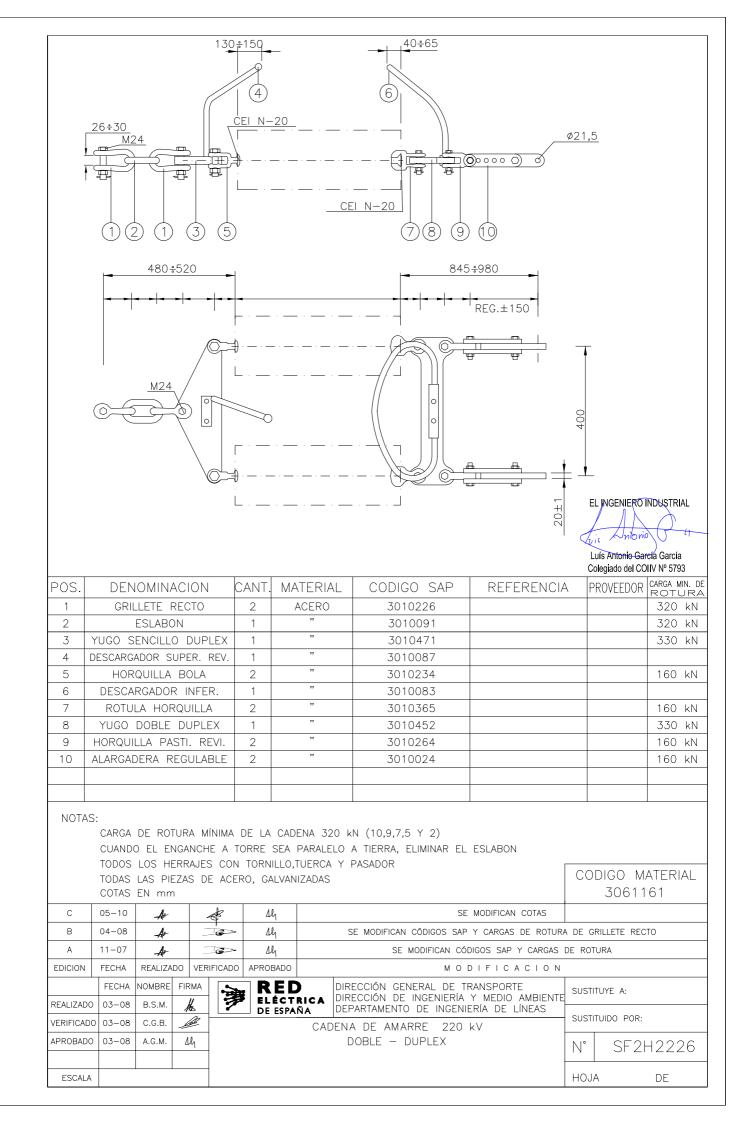
/ERIFICADO 09-13 G.D.C.

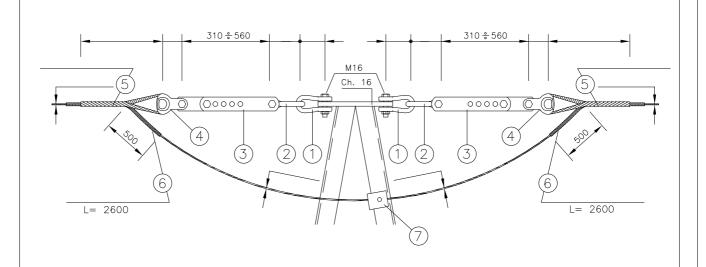
ESCALA :

Formato A3

APROBADO 09-13 A.G.M. 1

PATO04


DE


HOJA

ACERA EQUIPOTENCIAL + 1^{er} ANILLO + 2° ANILL

DE PUESTA A TIERRA EN APOYO FRECUENTADO (1

CIMENTACIÓN TIPO PATAS SEPARADAS

EL INGENIERO INDUSTRIAL

NOTAS CONSTRUCCIÓN:

Luís Antonio García García Colegiado del COIIV Nº 5793

- 1.— Para montaje en portico utilizar medio conjunto.
- 2.— Cuando el conjunto se utiliza para bajada de cables no se montara la posicion 7.

POS.	DENOMINACION	CANT.	MATERIAL	REFERENCIA	PROVEEDOR	CARGA DE ROTURA
1	GRILLETE RECTO	2	ACERO			
2	ESLABON REVIRADO	2	"			
3	ALARGADERA REGULABLE	2	"			
4	HORQUILLA GUARDACABO	2	,,			
5	RETENCION PREFORMADA	2	AC.REC.AL/C.SILICE			
6	VARILLAS PROTECCION	2	"			
7	CONEXION BAJADA	1	ALEAC. ALUM.			

NOTAS:

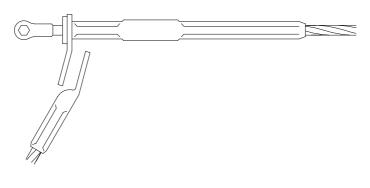
ESCALA

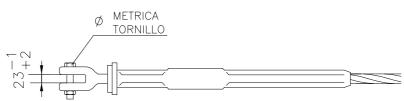
CARGA DE ROTURA MINIMA DE LOS HERRAJES 140 KN CARGA DE LA ROTURA MINIMA DE LA RETENCION 140 KN

TODAS LAS PIEZAS DE ACERO, GALVANIZADAS COTAS EN mm

				,			
COTAS EN mm Ø17,00÷Ø18,6							
12	A	A	Δly	SE MODIF	FICAN VALORES ALARG	ADERA	
		A					

E	11-12	A		Ar	Δlq		SE MODIFICAN VALORES ALARGAD	ERA			
D	05-09	A		A	Δly		SE MODIFICA REGULACIÓN				
EDICION	FECHA	REALIZA	DO \	VERIFICADO	DO APROBADO MODIFICACION			ADO APROBADO MODIFICACION			
		NOMBRE	FIRM	MA S	RED		DIRECCIÓN GENERAL DE TRANSPORTE DIRECCIÓN DE INGENIERÍA Y MEDIO AMBIENTE	SUSTITUYE A:			
REALIZADO	1-01	A.L.A.	A		☐ DE ESPA						
VERIFICADO	1-01	A.L.A.	A	-			CONJUNTO DE AMARRE		SUSTITUIDO POR:		
APROBADO	1-01	A.G.M.	Δl	1	CAE		OMPUESTO (TIERRA—OPTICO)	NI°	SF4H128		


N SF4H1Z8


CODIGO MATERIAL

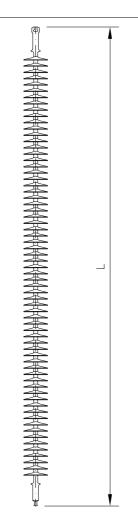
3103127

GAMA de Ø

HOJA DE

CONDUCTOR	CODIGO DE	CONDUCTOR	CARGA MINIMA DE	d	
CONDUCTOR	GRAPA	EN mm	ROTURA DE GRAPA	Ø	
GULL	3010130	ø25,38	≽95% CARGA DE ROTURA DEL CABLE	M20	
CONDOR	3010125	ø27,72	"	M20	
RAIL	3010139	ø29,61	"	M20	
CARDINAL	3010124	ø30,42	,,	M20	
LAPWING	3010137	ø38,16	,,	M20	
HAWK	3010132	ø21,8	,,	M16	
GULL	3111614	ø25,38	"	M16	
CURLEW	3111611	ø31,60	"	M20	

EL INGENIERO INDUSTRIAL


TODOS LOS HERRAJES CON TORNILLO, TUERCA Y PASADOR

TODAS LAS PIEZAS DE ACERO, GALVANIZADAS

COTAS EN mm

Luís Antonio García García Colegiado del COIIV Nº 5793

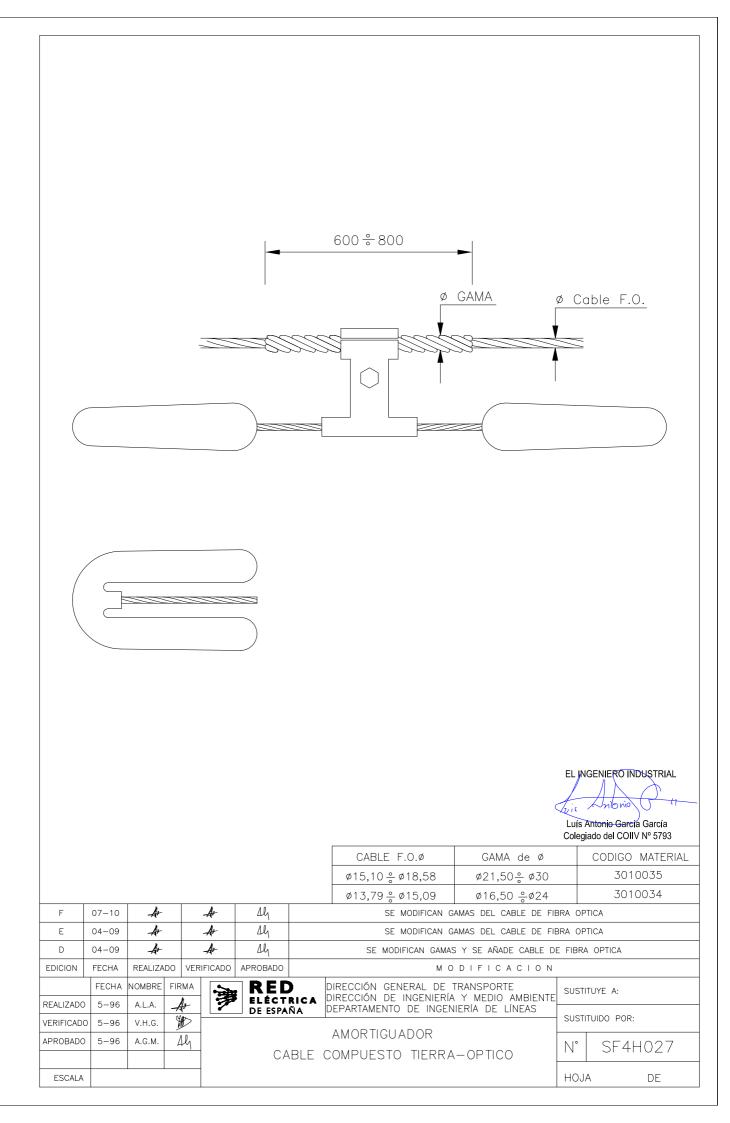
E	06-17	A		SV	Δly		SE AÑADE GRAPA CURLEW DE M	M20		
D	01-16	A		141	Δly		SE AÑADE GRAPA GULL DE M	16		
С	04-12	A		<i>[</i>][Δlq		SE MODIFICA CUADRO Y SE AÑADE COND	UCTOR	CTOR HAWK	
EDICION	FECHA	REALIZA	.DO	VERIFICADO	APROBADO		M O D I F I C A C I O N			
	FECHA	NOMBRE	FIRI	MA A	REC)	DIRECCIÓN GENERAL DE TRANSPORTE DIRECCIÓN DE INGENIERÍA	SUSTITUYE A:		
REALIZADO 06-0		A.LA	A		DE ESPAÑA					
VERIFICADO	06-08	D.L.A.	76	3 >				SUSTI	TUIDO POR:	
APROBADO	06-08	A.G.M.	Δl	4					G001	
							GRAPA DE AMARRE	- •		
FSCALA									A DF	

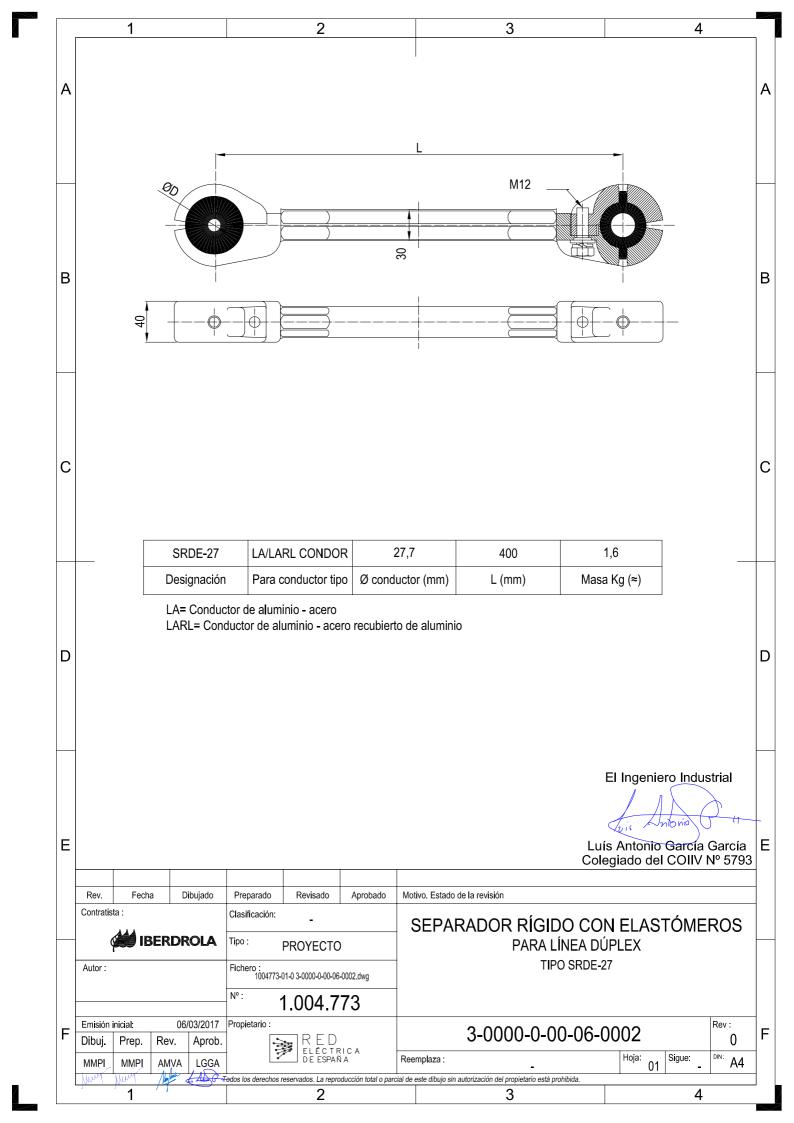
EL INGENIERO INDUSTRIAL

Luís Antonio García García Colegiado del COIIV Nº 5793

COTAS EN mm.

ESCALA


TENSIÓN	DISPOSICIÓN	CONDUCTOR	NIVEL DE CONTAMINACIÓN S/RLAT	TIPO DE BASTÓN	L	GRADO DE AISLAMIENTO mm/kV	LÍNEA DE FUGA (mm)	NORMA	CARGA DE ROTURA (kN)
66 kV Islas	Sx	HAWK	ISLAS (35 mm/kV)	TIPO 20	1000	35	2.537	CEI-N16	120
132 kV Islas	Sx	HAWK	ISLAS (35 mm/kV)	TIPO 21	1530	35	5.075	CEI-N16	120
220 kV	Sx	CONDOR	ISLAS (35 mm/kV)	TIPO 13	2340	35	8.575	CEI-N16	120
Islas	Dx	CONDOR	ISLAS (35 mm/kV)	TIPO 14	2500	35	8.575	CEI-N20	160
	Sx	CONDOR	IV MUY FUERTE	TIPO 12	2200	31	7.595	CEI-N16	140
220kV	Dx	CONDOR	III FUERTE	TIPO 10	2500	25	6.125	CEI-N20	160
		CONDOR	IV MUY FUERTE	TIPO 11	2500	31	7.595	CEI-N20	160
	_	DAII	III FUERTE	TIPO 8	3260	25	10.500	CEI-N20	160
	Dx	RAIL	IV MUY FUERTE	TIPO 9	3550	31	13.020	CEI-N20	160
400114		OONBOD	III FUERTE	TIPO 4	3200	25	10.500	CEI-N20	210
400kV	Tx	CONDOR	IV MUY FUERTE	TIPO 5	3700	31	13.020	CEI-N20	210
	_	LADWINO	III FUERTE	TIPO 4	3200	25	10.500	CEI-N20	210
	Dx	LAPWING	IV MUY FUERTE	TIPO 5	3700	31	13.020	CEI-N20	210


	•			•		· · · · · · · · · · · · · · · · · · ·	•	
В	03-16	Ar	1	ul	Δly	SE QUITA DE 220kV SIMPLEX CONDOR	III FUE	RTE
А	03-14	Ar	-	₽(Δly	SE AÑADE 220 kV,132kV Y 66kV (ISLAS)	
EDICION	FECHA	REALIZADO) VERII	FICADO	O APROBADO MODIFICA C			
	FECHA	NOMBRE F	FIRMA	沙	RED	DIRECCIÓN GENERAL DE TRANSPORTE	SUSTI	TUYE A:
REALIZADO	06-08	A.L.A.	Ar	7	ELÉCTRICA DE ESPAÑA		SUSTITUIDO POR:	
VERIFICADO	06-08	D.L.A.	78>					
ADDORADO	06-08	АСМ	10.					

AISLAMIENTO COMPUESTO

N° A002

HOJA DE

